Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Adv ; 8(1): eabi5499, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1612935

ABSTRACT

Close contact between people is the primary route for transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). We quantified interpersonal contact at the population level using mobile device geolocation data. We computed the frequency of contact (within 6 feet) between people in Connecticut during February 2020 to January 2021 and aggregated counts of contact events by area of residence. When incorporated into a SEIR-type model of COVID-19 transmission, the contact rate accurately predicted COVID-19 cases in Connecticut towns. Contact in Connecticut explains the initial wave of infections during March to April, the drop in cases during June to August, local outbreaks during August to September, broad statewide resurgence during September to December, and decline in January 2021. The transmission model fits COVID-19 transmission dynamics better using the contact rate than other mobility metrics. Contact rate data can help guide social distancing and testing resource allocation.

2.
Sci Rep ; 11(1): 20271, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1467133

ABSTRACT

To support public health policymakers in Connecticut, we developed a flexible county-structured compartmental SEIR-type model of SARS-CoV-2 transmission and COVID-19 disease progression. Our goals were to provide projections of infections, hospitalizations, and deaths, and estimates of important features of disease transmission and clinical progression. In this paper, we outline the model design, implementation and calibration, and describe how projections and estimates were used to meet the changing requirements of policymakers and officials in Connecticut from March 2020 to February 2021. The approach takes advantage of our unique access to Connecticut public health surveillance and hospital data and our direct connection to state officials and policymakers. We calibrated this model to data on deaths and hospitalizations and developed a novel measure of close interpersonal contact frequency to capture changes in transmission risk over time and used multiple local data sources to infer dynamics of time-varying model inputs. Estimated epidemiologic features of the COVID-19 epidemic in Connecticut include the effective reproduction number, cumulative incidence of infection, infection hospitalization and fatality ratios, and the case detection ratio. We conclude with a discussion of the limitations inherent in predicting uncertain epidemic trajectories and lessons learned from one year of providing COVID-19 projections in Connecticut.


Subject(s)
COVID-19 , Models, Statistical , Pandemics , Public Health Surveillance/methods , COVID-19/epidemiology , COVID-19/transmission , Connecticut/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL